Reasoning about system-level failure behavior from large sets of function-based simulations

نویسندگان

  • David C. Jensen
  • Oladapo Bello
  • Chris Hoyle
  • Irem Y. Tumer
چکیده

This paper presents the use of data clustering methods applied to the analysis results of a design-stage, functional failure reasoning tool. A system simulation using qualitative descriptions of component behaviors and a functional reasoning tool are used to identify the functional impact of a large set of potential single and multiple fault scenarios. The impact of each scenario is collected as the set of categorical function “health” states for each component-level function in the system. This data represents the space of potential system states. The clustering and statistical tools presented in this paper are used to identify patterns in this system state space. These patterns reflect the underlying emergent failure behavior of the system. Specifically two data analysis tools are presented and compared. First, a modified k-means clustering algorithm is used with a distance metric of functional effect similarity. Second, a statistical approach known as Latent Class Analysis is used to find an underlying probability model of potential system failure states. These tools are used to reason about how the system responds to complex fault scenarios and assist in identifying potential design changes for fault mitigation. As computational power increases, the ability to reason with large sets of data becomes as critical as the analysis methods used to collect that data. The goal of this work is to provide complex system designers with a means of using early design simulation data to identify and mitigate potential emergent failure behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability-based maintenance scheduling of powered supports in Tabas mechanized coal mine

Utilizing the gathered failure data and failure interval data from Tabas coal mine in two years, this paper discusses the reliability of powered supports. The data sets were investigated using statistical procedures and in two levels: the existence of trend and serial correlation. The results show that the powered supports follow the Gamma reliability function. The reliability of the machine de...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

Optimal overhaul–replacement policy for a multi-degraded repairable system sold with warranty

In this research, we study an optimal overhaul–replacement policy of a multi-degraded repairable system sold with a free replacement warranty. In the proposed replacement policy, a maintenance action and failure are dependent on a system degradation level and the system age, and hence the replacement model will provide more effective maintenance decisions. Failure of the system is modeled using...

متن کامل

PROPERTY ANALYSIS OF TRIPLE IMPLICATION METHOD FOR APPROXIMATE REASONING ON ATANASSOVS INTUITIONISTIC FUZZY SETS

Firstly, two kinds of natural distances between intuitionistic fuzzy sets are generated by the classical natural distance between fuzzy sets under a unified framework of residual intuitionistic implication operators. Secondly, the continuity and approximation property of a method for solving intuitionistic fuzzy reasoning are defined. It is proved that the triple implication method for intuitio...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AI EDAM

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014